Reasoning About Programs

Mark Wheelhouse

PhD Student
Department of Computing
Imperial College London



So What is a PhD Anyway?




What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”

Using Mathematics to prove properties
about computer programs

Sometimes we want to be 100% sure
the computer is doing what it should be
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Why Prove Programs?
A History Lesson

19805 - Therac 25 1996 - Ariane 5
A g data
< condition - e ow!

1991 - MIM-104 Patriot 1997 - USS Yorktown

rounding
error

divide by
zero error!
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What Kind of Systems do
We Want to be Sure of?

Building Design Software S
gystems Q©

l.e. - Anything that is safety critical
- When the cost of system failure is huge



Spotting Failure

@ We want to spot when a system can fail.

@ We want to prove that a system will not fail.

@ We can use mathematics (namely logic) to do
this.
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X,Y,Z are things (objects, people, concepts,...)

isRed(X) = true if X is red
isSRound(X) = true if X is round
isSRedBall(X) = true if X is a red ball

isRedBall(X) = isRed(X) A isRound(X)
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Logic - Structures

another way of looking at this using
a satisfaction relation,

.
X E isRed & X is red

XEisRound << X is round
X EisRedBall < X is a red ball

iISRedBall = isRed A isRound
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Logic - Structures

data E Tree-Formula

tree. # 7= 0O empty tree
nNfT] tree node

BT ordered trees

Eg: 1[ 2[0] | 3[0] ]
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Tree Examples
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1[ 2[ 5[0] ] | 3[O] | 4[ 6[0] | 7[0] ] ]
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Data Update

We want to describe the behavior of a program,

{ P} computer command { Q }

pre-condition post-condition

pre-condition must hold before and post-condition
must hold after, or we get a fault!

¢ colour(X, ?) }

Eg: .
paint(X, Green)

§ colour(X, Green) }



Local Data Update

{ y=3, x=n, 2=2 }
addOne(x)
{ y=3, x=n+l, z=2 }



Local Data Update

{ y=3, x=n, 2=2 }
addOne(x)
{ y=3, x=n+l, z=2 }

|

{ X=n }
addOne(x)
{ x=n+1 }



Local Tree Update

tml filnftz] | t5]}
p := goUpTree(n)
§m[ ti | n[t2d | t3] A (p=m) }

{ nlt] }

deleteTree(n)

10}

{ n[t] }
addNodeAfter(n,x)

{ n[t] | x[0] }
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Example - Family Trees

A more complex data structure,

database D ::

family tree F ::

Op

familyName[F]

D+D

OF

name:marlo
Gen:Age

FIF

[F]

empty database
one family
database join

empty tree
tree node

ordered trees
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Example - Family Tree
Nodes

mggﬁfmggro [F] tfree node
married to
persons name I (- if unmarried)
/

persons -

name marTo

gender .
(M or F) ()\ / age In years

links to children




Example - The Simpsons

Simpson
Abe Mona
M 74 / D
Homer Marge
M 38 / 38
Bart - Lisa - Maggie

M 10 F 8 5 2
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{ name
?
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}  marry(m,w)
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Example - Commands

;

Y

{ name .
?
{ name ¢
?
m i
%
M X
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?/7

.
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Now you are going to
perform concurrent local
reasoning



Example - Commands
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