Reasoning About Programs

Mark Wheelhouse

PhD Student
Department of Computing
Imperial College London



So What is a PhD Anyway?




What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”



What am I Doing?

"Context Logic, Tree Update and Concurrency”

Using Mathematics to prove properties
about computer programs

Sometimes we want to be 100% sure
the computer is doing what it should be



Why Prove Programs?
A History Lesson



Why Prove Programs?

A History Lesson
19805 - Therac 25

Therao25 Unit Treatment Table

Motion power switch

Therapy room
Room N intercom
emergency
switch

Turntable
position
monitor

Control

Motion enable Beam on/off light interlock emergency

switch (footswitch) switch switches

Display
terminal

Figwe 1. Typical Therac-25 facility




Why Prove Programs?

A History Lesson
19805 - Therac 25

race
condition

Motion enable Beam on/off light
switch (footswitch)

interlock
switch

Display
terminal

Figwe 1. Typical Therac-25 facility



Why Prove Programs?

A History Lesson
19805 - Therac 25

race
condition




Why Prove Programs?

A History Lesson
19805 - Therac 25

Therao25 Unit

race
condition

rounding
error




Why Prove Programs?

A History Lesson
1980s - Therac 25 1996 - Ariane 5

Therao25 Unit

race
condition

rounding
error




Why Prove Programs?
A History Lesson

1980s - Therac 25 1996 - Ariane 5
r‘c‘fﬁ data
S - civion A overflow!

rounding
error




Why Prove Programs?
A History Lesson

1980s - Therac 25 1996 - Ariane 5
rege e data
< condition - e ow!

1991 - MIM-104 Patriot 1997 - USS Yorktown

rounding
error




Why Prove Programs?
A History Lesson

19805 - Therac 25 1996 - Ariane 5
A g data
< condition - e ow!

1991 - MIM-104 Patriot 1997 - USS Yorktown

rounding
error

divide by
zero error!




What Kind of Systems do
We Want to be Sure of?



What Kind of Systems do
We Want to be Sure of?

Building Design Software S
gysterm Q©
ef\ng v W
S,ch XF Tc\fg O(K
98/,,;0 W Pac
S eMmakers



What Kind of Systems do
We Want to be Sure of?

Building Design Software S
gystems Q©

l.e. - Anything that is safety critical
- When the cost of system failure is huge



Spotting Failure

@ We want to spot when a system can fail.

@ We want to prove that a system will not fail.

@ We can use mathematics (namely logic) to do
this.



Logic - The Basics

boolean variables - “have one of two values”

true false
| 0,

P =



Logic - The Basics

boolean variables - “have one of two values”

true false
| 0,

P -

boolean operators - “ways of combining variables”
and: A or: Vv implies: =



Logic - The Basics

boolean variables - “have one of two values”

true false
P -
1 O
boolean operators - “ways of combining variables”
and: A or: Vv implies: =
By [P i L o il P qeerP—9
B O O O =00 O O 1
O "1EFEs0) Pheg k| 1 0 | 1
15| S OS |G O 1 O O
1 1 1 1 1 1 1 1 1




Logic - Predicates

X,Y,Z are things (objects, people, concepts,...)

isRed(X) = true if X is red
isSRound(X) = true if X is round
isSRedBall(X) = true if X is a red ball



Logic - Predicates

X,Y,Z are things (objects, people, concepts,...)

isRed(X) = true if X is red
isSRound(X) = true if X is round
isSRedBall(X) = true if X is a red ball

isRedBall(X) = isRed(X) A isRound(X)



Logic - Structures

another way of looking at this using
a satisfaction relation,

.
X E isRed & X is red

XEisRound << X is round
X EisRedBall < X is a red ball



Logic - Structures

another way of looking at this using
a satisfaction relation,

.
X E isRed & X is red

XEisRound << X is round
X EisRedBall < X is a red ball

iISRedBall = isRed A isRound



Logic - Structures

data E Tree-Formula

free T ::=



Logic - Structures

data E Tree-Formula

tree. # 7= 0O empty tree



Logic - Structures

data E Tree-Formula

tree. # 7= 0O empty tree
nNfT] tree node



Logic - Structures

data E Tree-Formula

tree. # 7= 0O empty tree
nNfT] tree node

BT ordered trees



Logic - Structures

data E Tree-Formula

tree. # 7= 0O empty tree
nNfT] tree node

BT ordered trees

Eg: 1[ 2[0] | 3[0] ]




Tree Examples

) @ ) @ @ c)?

e 2N,
X




Tree Examples

a) ® / ) @ @ c)
1[0]
; ’R N

e
®o®



Tree Examples
) @ b

® ®/ o
0] 10} | 2[0]
g & N

e
®o®



Tree Examples
) @ b

® ®/ o
0] 10} | 2[0]
g & N

e
®o®



Tree Examples

a) @/ ) @ @/ o
1[O] 1[0] | 2[O]

, XV \

1[ 2[0] | 3[0] ]

e
®o®



Tree Examples

a) @/ ) @ @/ o
1[O] 1[0] | 2[O]

, XV \

1[ 2[0] | 3[0] ]

e
®o®



Tree Examples

a) @ ) @ @V o
10] 0] | 2[0]
' G ,\

1[ 2[0] | 3[0] ]

:/‘k

1[ 2[ 5[0] ] | 3[O] | 4[ 6[0] | 7[0] ] ]



Data Update

We want to describe the behavior of a program,

{ colour(X, ?) }
paint(X, Green)
§ colour(X, Green) }



Data Update

We want to describe the behavior of a program,

{ P} computer command { Q }

pre-condition post-condition

{ colour(X, ?) }
paint(X, Green)
§ colour(X, Green) }



Data Update

We want to describe the behavior of a program,

{ P} computer command { Q }

pre-condition post-condition

pre-condition must hold before and post-condition
must hold after, or we get a fault!

¢ colour(X, ?) }

Eg: .
paint(X, Green)

§ colour(X, Green) }



Local Data Update

{ y=3, x=n, 2=2 }
addOne(x)
{ y=3, x=n+l, z=2 }



Local Data Update

{ y=3, x=n, 2=2 }
addOne(x)
{ y=3, x=n+l, z=2 }

|

{ X=n }
addOne(x)
{ x=n+1 }



Local Tree Update

tml filnftz] | t5]}
p := goUpTree(n)
§m[ ti | n[t2d | t3] A (p=m) }

{ nlt] }

deleteTree(n)

10}

{ n[t] }
addNodeAfter(n,x)

{ n[t] | x[0] }



Example - Family Trees

A more complex data structure,



Example - Family Trees

A more complex data structure,

database D ::=



Example - Family Trees

A more complex data structure,

database D := Op empty database



Example - Family Trees

A more complex data structure,

database D := Op empty database
familyName[F] one family



Example - Family Trees

A more complex data structure,

database D := Op empty database
familyName[F] one family
D+D database join



Example - Family Trees

A more complex data structure,

database D ::

family tree F ::

Op

empty database

familyName[F] one family

D+D

database join



Example - Family Trees

A more complex data structure,

database D ::

family tree F ::

Op
familyName[F]
D+D

OF

empty database
one family
database join

empty tree



Example - Family Trees

A more complex data structure,

database D ::

family tree F ::

Op

empty database

familyName[F] one family

D+D

Or

name:marlo
Gen:Age

database join

empty tree

[F] tree node



Example - Family Trees

A more complex data structure,

database D ::

family tree F ::

Op

familyName[F]

D+D

OF

name:marlo
Gen:Age

FIF

[F]

empty database
one family
database join

empty tree
tree node

ordered trees



Example - Family Tree
Nodes

name:marlo

Gen:Age [F] tree node



Example - Family Tree
Nodes

name:marlo

Gen:Age [F] tree node

name marTo

Gen Age

l\;




Example - Family Tree
Nodes

name:marlo

Gen:Age [F] tree node

persons name |

name marTo

o




Example - Family Tree
Nodes

name:marTlo

Gen:Age [F] tree node

persons name |

PerSOnS name marTo

gender
(M or F) 21\)




Example - Family Tree
Nodes

mggﬁfmggro [F] tfree node
married to
persons name I (- if unmarried)
/

persons -

name marTo

gender
(M or F) Xl\)




Example - Family Tree
Nodes

mggﬁfmggro [F] tfree node
married to
persons name I (- if unmarried)
/

persons -

name marTo

gender
(M or F) 2 l \ age N years




Example - Family Tree
Nodes

mggﬁfmggro [F] tfree node
married to
persons name I (- if unmarried)
/

persons -

name marTo

gender .
(M or F) ()\ / age In years

links to children




Example - The Simpsons

Simpson
Abe Mona
M 74 / D
Homer Marge
M 38 / 38
Bart - Lisa - Maggie

M 10 F 8 5 2




Example - Commands



Example - Commands

name| ? nom i

} reName(name, nom) §

? [

? ?




Example - Commands

name| ? nom ?

} reName(name, nom) §

? ? ? ?

name| ? } { name| ?

reage(name, x)




Example - Commands

{ name
?

{ name

— ¢  reage(name, Xx)

}  marry(m,w)

— ¢+ -reName(name, nom) ¢{

!

nom

?

name

!




Example - Commands

;

Y

{ name .
?
{ name ¢
?
m i
%
M X
4 mother

?/7

.

S

} birth(mother, G, child) ¢

reage(name, x)

—} marry(m,w)

} reName(name, nom) §

!

!

nom ?

? ? }

name| ? }

¢ X

m W }

M x/y

? mother
?/?

¥

AN

child | -

G




Now you are going to
perform concurrent local
reasoning



Example - Commands

name g

?

name §

;

M

Y

?

mother

?/7

.

N\

} birth(mother, G, child) §

reage(name, x)

—}  marry(m,w)

} reName(name, nom) §

1
!

nom ?
(4 (4 }

name| ? }
1 X

m w }
M x/y

(4 mother

?/?

¥

N,

child -

G




